

June 24, 2025

Duivenvoorden Haulage Limited
Aggregate Pit Expansion – Stormwater Management Brief
WMI File No.: 20-636
NVCA ID #: 42204

Duivenvoorden Haulage Ltd. is proposing to apply for a Class 'A' License (Category 3 – Pit Above Water) under the Aggregate Resources Act, for the expansion of an existing pit. The license would permit aggregate extraction to expand north onto the 437202 4th Line (Phases 1-3), Township of Melancthon property and include a strip of 437138 4th Line between the municipal right-of-way and the existing pit (Phase 1). The subject area for the pit expansion (licensed area) is 45 hectares (111.1 acres), with a proposed extraction area of 31.4 hectares (77.6 acres), and will be referred to as the "site" within the context of this brief.

As required by the Nottawasaga Valley Conservation Authority (NVCA) pre-consultation comments (dated June 23, 2020) and through continued correspondence with the NVCA (email dated Nov. 11, 2020 & comments letter dated Oct. 20, 2021) and Township peer review comments from R.J. Burnside & Associates Ltd. (letters dated April 12, 2022, August 22, 2024 and January 7, 2025), this brief has been prepared by WMI & Associates Limited in support of the proposed aggregate pit expansion from a stormwater management perspective.

The proposed aggregate pit expansion does not include an increase in impervious area as it is simply an extension of the sites existing earthworks operation.

Upon investigation of the existing drainage conditions associated with the site, it was determined that the subject lands has no stormwater outlet due to its existing topography. As indicated on the attached **Drainage Plan (FIG1)**, all contributing runoff from external lands enters from the west, north and east, with the majority of the runoff being generally concentrated at four (4) specific locations. All internal and external runoff in the existing condition ultimately concentrates and infiltrates into the native soils at either the low point located centrally within Phase 3A or within Phase 1 immediately east of the existing pit and adjacent to the 4th Line ROW. As indicated by Dufferin County's GIS mapping, aerial imagery clearly illustrates the low area (surfacing ponding visible) while Google Maps imagery taken at a different time shows the same area as being cropped, further suggesting that all contributing runoff ultimately infiltrates on-site.

The external runoff from the southwest runs into an existing wetland feature located at the southwest corner of 437202 4th Line prior to entering the proposed aggregate extraction area. Runoff from the wetland is only anticipated to discharge into the site upon the wetland surcharging, at which time the runoff will follow the site topography across the currently farmed lands to an existing depression within Phase 3A where it is infiltrated into the native soils. Prior to Phase 3A aggregate extraction, a cut-off swale will be constructed along the north limit of the wetland to intercept external drainage and direct it into the already extracted Phase 2 portion of the pit.

The external runoff from the north runs through a grass hollow (small valley feature) prior to reaching the sites north property boundary. From this location the external runoff is directed across the currently farmed lands to an existing depression within Phase 3A via the natural topography of these lands where it is infiltrated into the native soils. Prior to Phase 3A aggregate extraction, a temporary swale will convey external runoff south into the already extracted Phase 2 portion of the pit to allow for the extraction within Phase 3A. Once Phase 3A has been completed, the temporary swale will be removed and external runoff will be directed east from the downstream end of the proposed twin 900mmØ CSP culverts under the noise berm, into Phase 3A to allow for the extraction within Phase 3B.

A relatively small portion of the sites external drainage comes from the 4th Line right-of-way (ROW) at the northeast and southeast corners of the proposed pit expansion area. Two (2) distinct low points exist in the west ditch of the 4th Line along the site frontage that have potential to spill into the subject site. The northern low point ultimately drains west to the existing depression within Phase 3A. Prior to Phase 3A aggregate extraction, a cut-off swale will be constructed from the downstream end of the proposed 400mmØ CSP culvert under the noise berm, south into Phase 2 to allow for the extraction within Phase 3A. Upon completion of Phase 3A, the aforementioned cut-off swale can be removed and the contributing runoff to the culvert can discharge directly into Phase 3A.

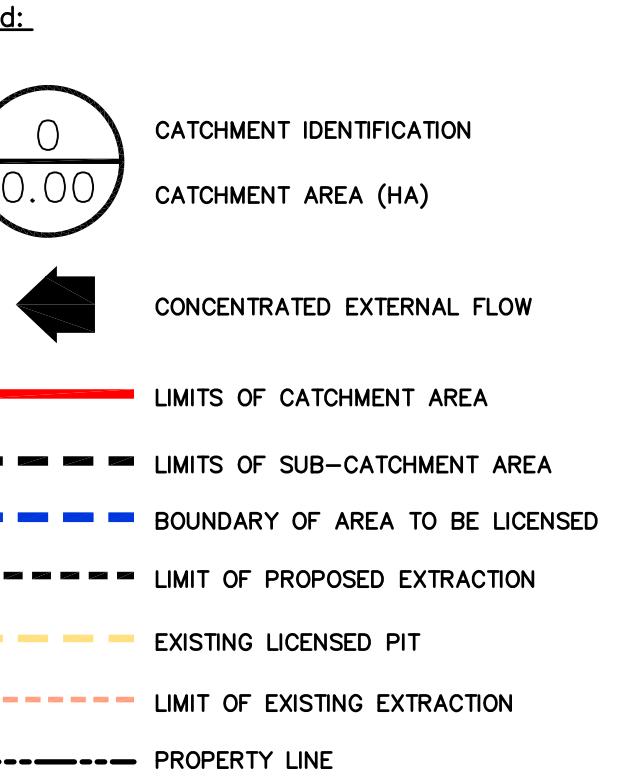
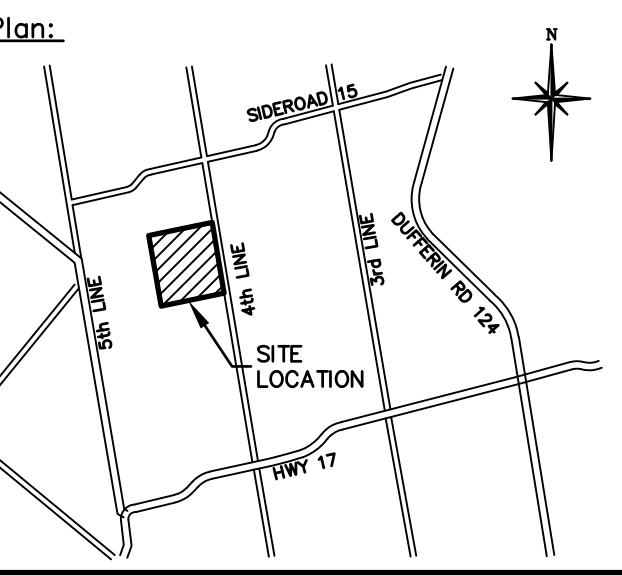
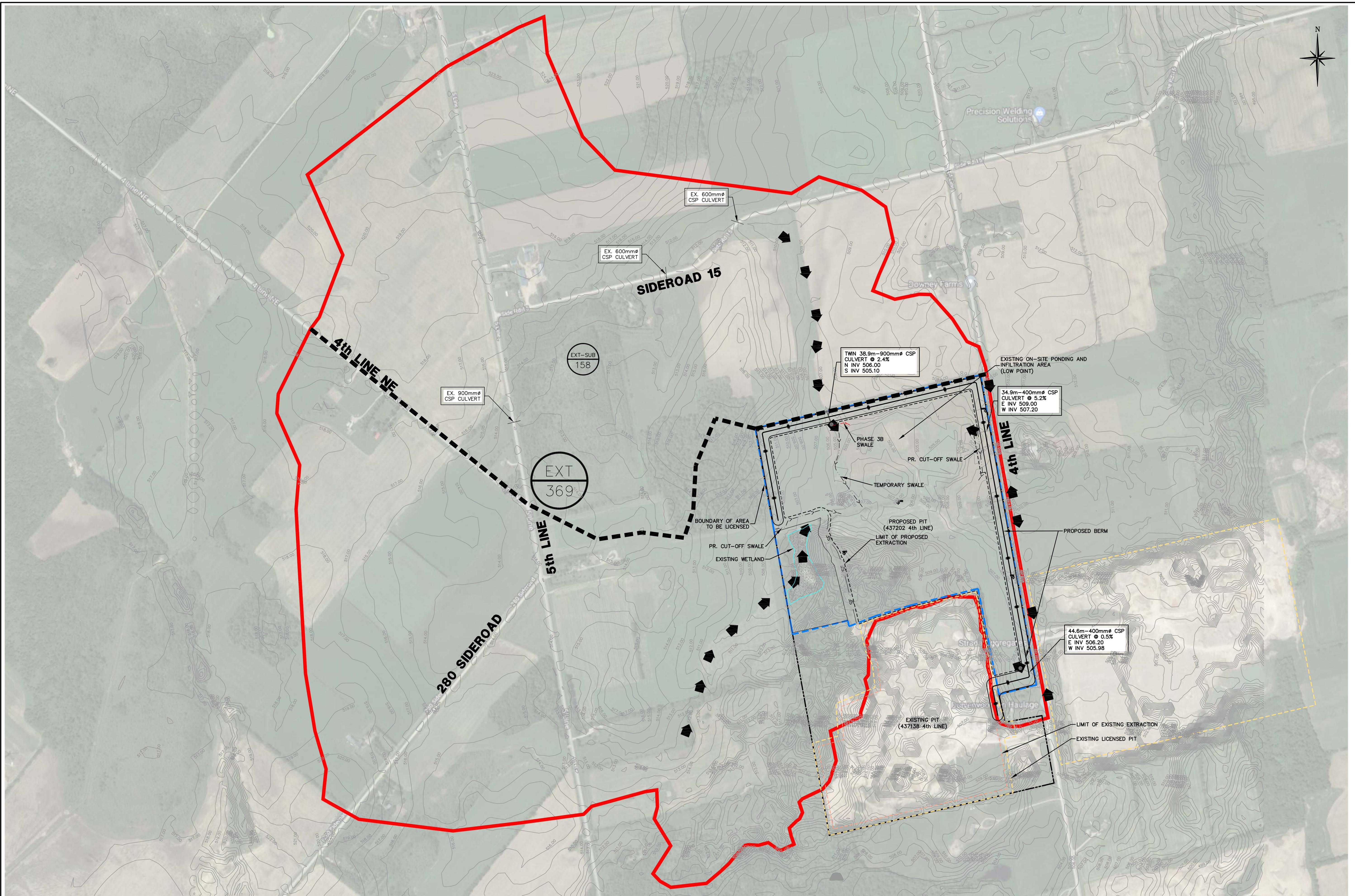
The southern low point within the west ditch of the 4th Line in the existing condition will consist of hydraulic relief into the Phase 1 lands via a proposed 400mmØ CSP culvert under the noise berm. The discharge location of the culvert within the site is the first area proposed for aggregate extraction. In the interim localized ponding and infiltration will occur at the culvert outlet on-site due to the existing topography in this area. Once the first portion of Phase 1 has been extracted, external runoff will be directed west into the existing pit area where it will be infiltrated.

The stormwater drainage for the pit expansion will be managed to suit the proposed phasing as per the Operational Plan prepared by Innovative Planning Solutions (IPS), which details the aggregate extraction activities. The drainage through the site in the proposed condition will follow the contours of the pit floor with an elevation of 507 masl (meters above sea level) at the northwest corner to 497 masl at the east limit of the property. The proposed sequencing of the stormwater drainage and erosion and sediment controls shall be as follows:

- Prior to any construction or pit expansion, silt fence is to be installed along the east limit of the existing wetland between the wetland and pit expansion Phases 1 & 2.
- Topsoil and overburden will be stripped from the site starting within Phase 1 and extending north as required, to construct the perimeter noise berms as detailed on the **Erosion & Sediment Control Plan (ESC)**.
- The removal of aggregate from Phases 1-2 (from the south towards the north) will generally direct the stormwater drainage to the previous phases / existing pit where it will minimize impacts to extraction operations and be temporarily stored within the property limits prior to being infiltrated as is in the existing condition.
- With the exception of the lowered/extracted areas of Phases 1 and 2, all internal and external drainage including excess runoff from the wetland, will flow into the existing depression located centrally within Phase 3A where it will be infiltrated as in the existing condition.
- Prior to construction of Phase 3A, three (3) cut-off swales will be constructed to redirect external runoff from the west, north and east, into the previously extracted Phase 2 portion of the site. Refer to the **Erosion & Sediment Control Plan (ESC)** for details.
- Upon completion of Phase 3A, the cut-off swales for the northern and northeastern external drainage inlets will be removed and these areas will be directed into Phase 3A to allow for the aggregate extraction within Phase 3B.

Based on the above, we request that this Stormwater Management Brief be received by the NVCA and Township in support of the proposed expansion of DHL's existing aggregate pit located on the 4th Line in the Township of Melancthon.

Respectfully submitted,




WMI & Associates Limited

Andrew Windrem, C. Tech

Jeremy W. Lightheart, P. Eng.

DRAWING REFERENCE NOTES:

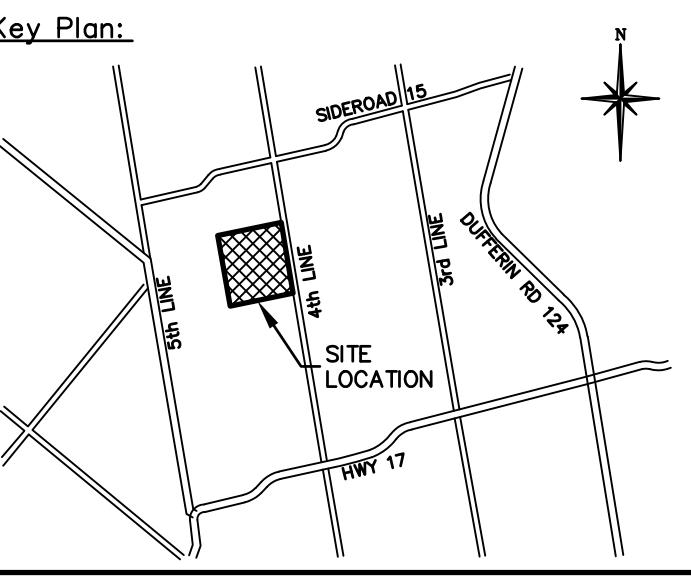
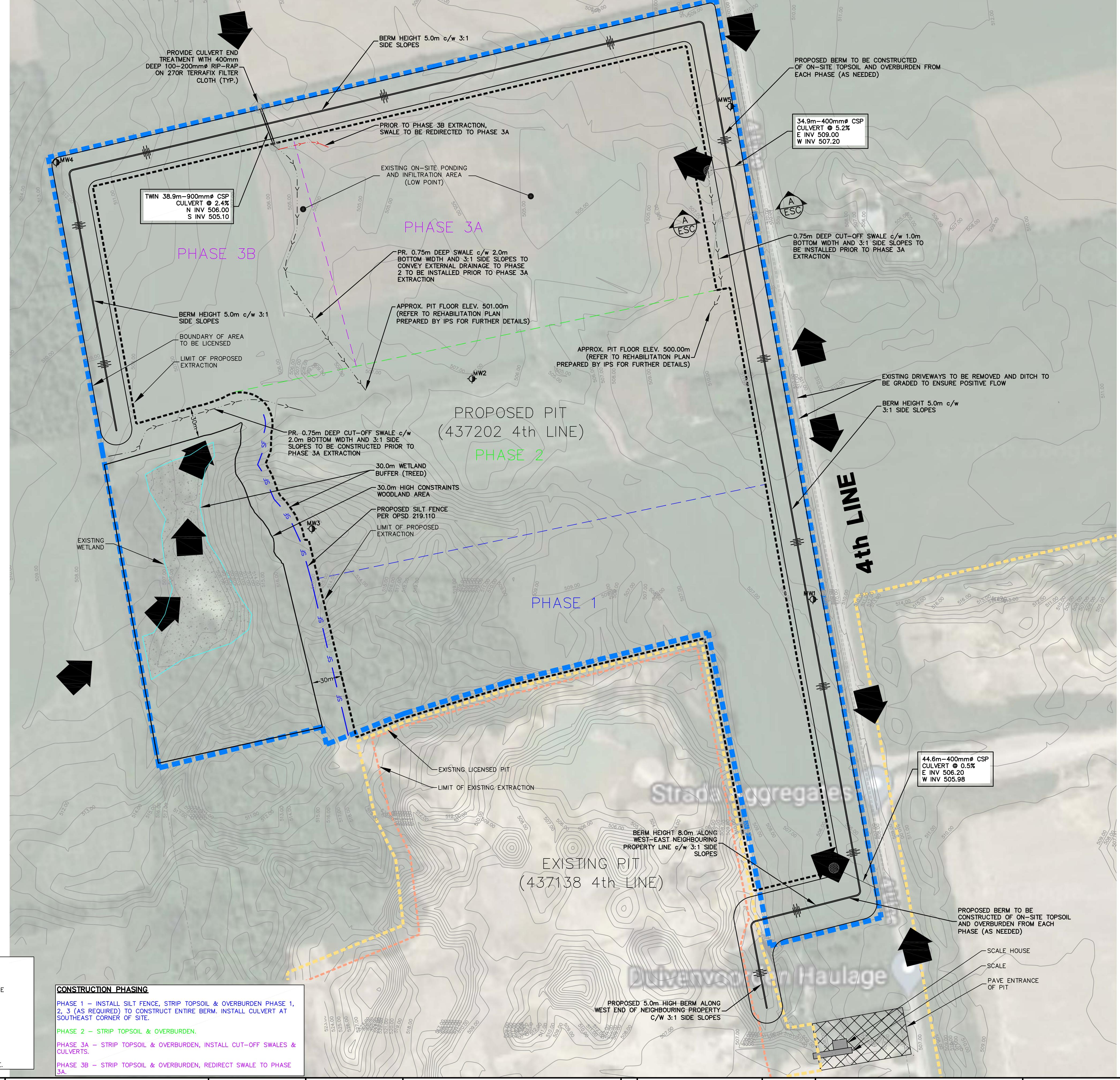
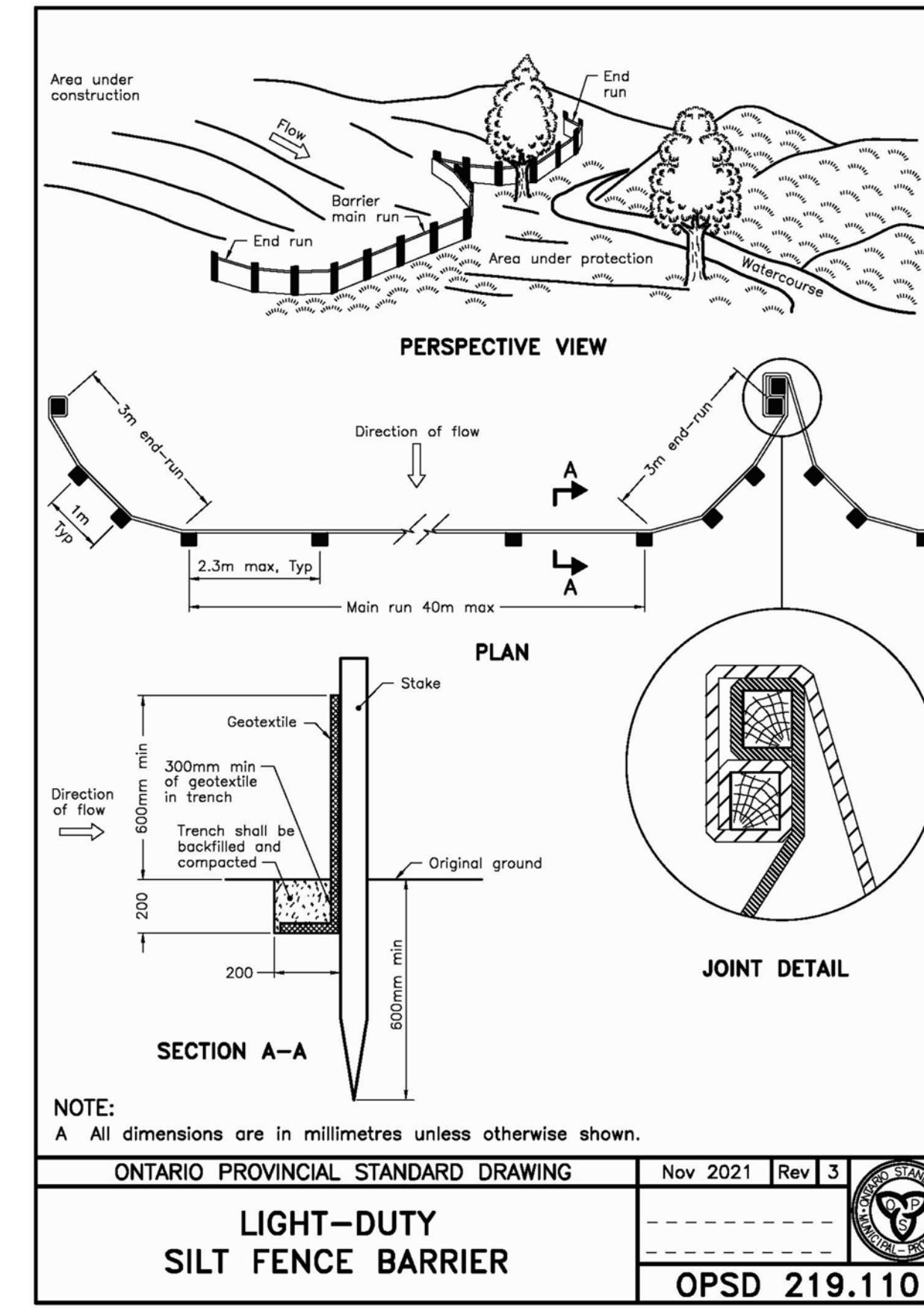
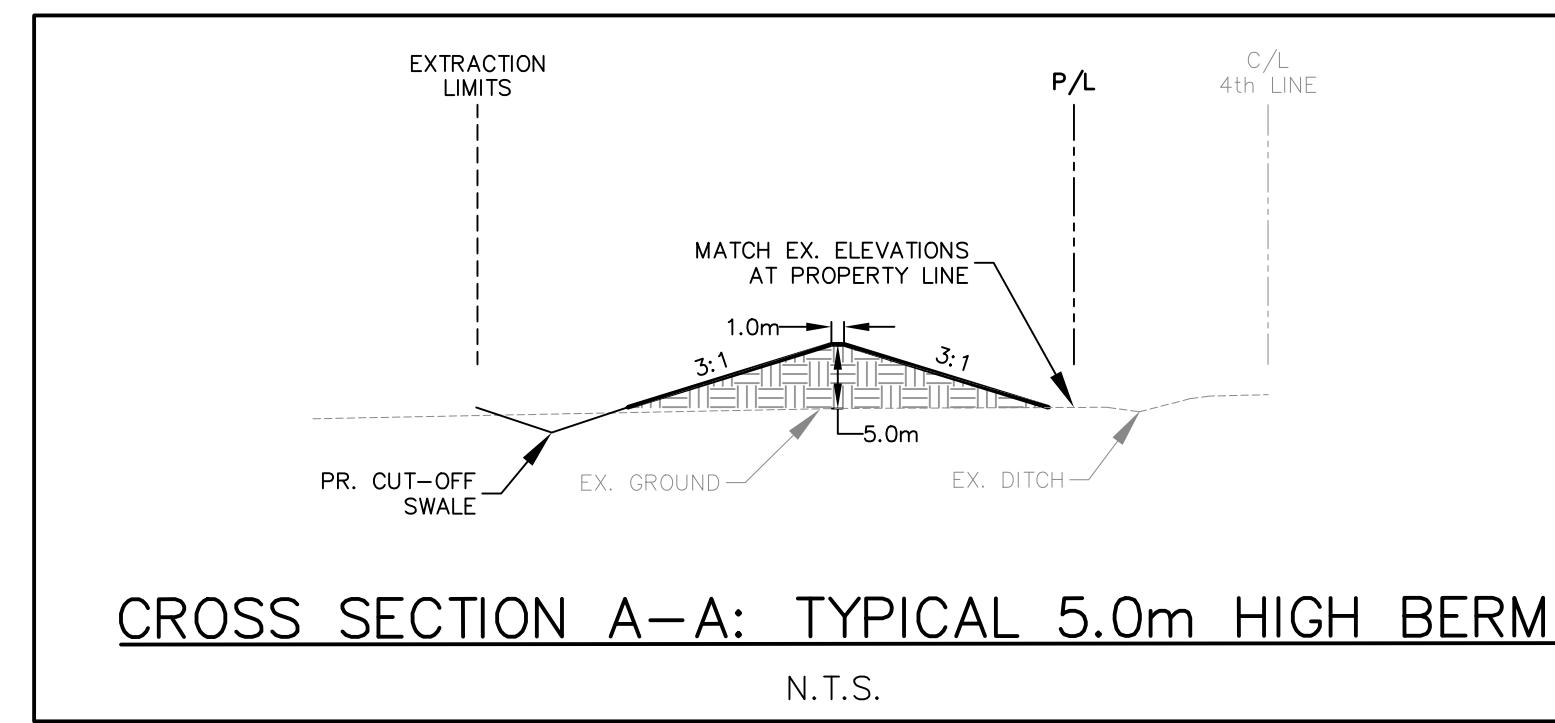
1. BASE MAPPING AND TOPOGRAPHIC INFORMATION FROM DIGITAL OBM AND AIR PHOTO ANALYSIS PROVIDED BY GOOGLE EARTH 2018 EUROPA TECHNOLOGIES
2. SHELBURNE PIT EXPANSION LANDS TOPOGRAPHIC INFORMATION PREPARED BY DHL DATED APRIL 8, 2025
3. EXTERNAL TO THE SITE, THE DEM TOPOGRAPHIC SURVEY WAS USED. INTERNAL TO THE SITE, THE DHL TOPOGRAPHIC SURVEY WAS USED. THE DEM SURFACE WAS RAISED BY 1.24M TO ALIGN WITH THE DHL TOPOGRAPHIC SURVEY.
4. PROPERTY BOUNDARY PREPARED BY RODNEY GREYER, OLS, DATED JANUARY 20, 2019.
5. OPERATIONAL PLAN PREPARED BY IPS DATED JUNE 2025.

CAUTION
CONTRACTOR TO DETERMINE
LOCATION OF EXISTING UTILITIES
PRIOR TO CONSTRUCTION.

Notes:

1. Unless noted otherwise, the measurements and distances shown on this drawing are shown in meters.
2. Do not scale drawings.
3. It is the contractor's responsibility to verify all dimensions, levels and datums on site and report any discrepancies or omissions to WMI & Associates Ltd. prior to construction.
4. This drawing is to be read and understood in conjunction with all other relevant documents applicable to this project.
5. This drawing is the exclusive property of WMI & Associates Ltd. and the reproduction of any part of this document without prior written consent is strictly prohibited.

No.	Issue / Revision	Date
1	1ST SUBMISSION	DEC. 15, 2020
2	2ND SUBMISSION - NVCA COMMENTS	MAY 24, 2024
3	3RD SUBMISSION	OCT. 18, 2024
4	4TH SUBMISSION	JUNE 24, 2025





DHL PIT
DRAINAGE PLAN

Client:
Duivenvoorden Haulage Ltd.
3425 9th Line
Innisfil, Ontario
L9S 3Z6

WMI & Associates Limited
119 Coller Street
Barrie, Ontario
L4M 1H5
Ph 705-797-2027
www.wmienterprise.ca

Drawn By AW Checked By JWL Drawing No.
Scale 1:5000 Project No. 20-636 FIG1

■ EX SIB	EX STD IRON BAR	EX WS	EX WATER SERVICE
■ EX IB	EX IRON BAR	EX HYD	EX FIRE HYD.
○ EX UP	EX UTILITY POLE	NS	EX ST NAME SIGN
☒ EX BELL PED		SS	EX STOP SIGN
▼ EX HYDRO TRANSFORMER	123.45	X	EX ELEVATION
— X — X — X — X — X — X —			EX FENCE
— XG — XG — XG — XG —			EX U/G GASMAIN
— XB — XB — XB — XB —			EX U/G BELL
— XH — XH — XH — XH —			EX U/G HYDRO
— XW — XW — XW — XW —	EX WV		EX WATERMAIN & VALVE
EX 00mm∅ SAN @ 0.0%		○	EX SAN SEWER & MH
EX 00mm∅ STM @ 0.0%		○	EX STM SEWER & MH
PROPOSED FEATURES (PR)			
— NS			PR STREET NAME SIGN
— SS			PR STOP SIGN
— SF — SF —			PR SILT FENCE
(L)			PR STREET LIGHT
▼			PR HYDRO TRANSFORMER
— (W)			PR WATER SERVICE
— (S)			PR SANITARY SERVICE
— (ST)			PR STORM SERVICE
00mm∅ W/M			PR WATERMAIN
○			PR FIRE HYDRANT
○			PR WATER VALVE
0m—00mm∅ SAN @ 0.0%	◀		PR SANITARY SEWER
○ MH A	◀		PR SANITARY MANHOLE
0m—00mm∅ STM @ 0.0%	◀		PR STORM SEWER
○ CBMH 1			PR CATCHBASIN MANHOLE
○ MH 1			PR MANHOLE
□ CB 1A			PR CATCHBASIN
— — — > — — — > —			PR SWALE
x 000.00			PR ELEVATION
x (000.00)			PR MATCH EXISTING ELEVATION (INTERPOLATED)
x 000.00TC			PR TOP OF CURB ELEVATION
x 000.00EP			PR EDGE OF PAVEMENT ELEVATION
— —			PR STEEP SLOPE
◀			CONCENTRATED EXTERNAL FLOW
— — — — BOUNDARY OF AREA TO BE LICENSED			
— — — — LIMIT OF PROPOSED EXTRACTION			
— — — HIGH CONSTRAINS WOODLAND AREA			
— — — EXISTING LICENSED PIT			
— — — LIMIT OF EXISTING EXTRACTION			
— — — PROPERTY LINE			
MW1			MONITORING WELL

DRAWING REFERENCE NOTES:

1. BASE MAPPING AND TOPOGRAPHIC INFORMATION FROM DIGITAL OBM AND AIR PHOTO ANALYSIS PROVIDED BY GOOGLE EARTH 2018 EUROPA TECHNOLOGIES
2. SHELBOURNE PIT EXPANSION LANDS TOPOGRAPHIC INFORMATION PREPARED BY DHL DATED APRIL 8, 2025.
3. EXTERNAL TO THE SITE, THE DEM TOPOGRAPHIC SURVEY WAS USED. INTERNAL TO THE SITE, THE DHL TOPOGRAPHIC SURVEY WAS USED. THE DEM SURFACE WAS RAISED BY 1.24m TO ALIGN WITH THE DHL TOPOGRAPHIC SURVEY.
4. PROPERTY BOUNDARY PREPARED BY RODNEY GREYER, OLS, DATED JANUARY 20, 2019.
5. OPERATIONAL PLAN PREPARED BY IPS DATED JUNE 2025.

CAUTION
CONTRACTOR TO DETERMINE
LOCATION OF EXISTING UTILITIES
PRIOR TO CONSTRUCTION.

1

No.	Issue
1	2N
2	TH
3	FO

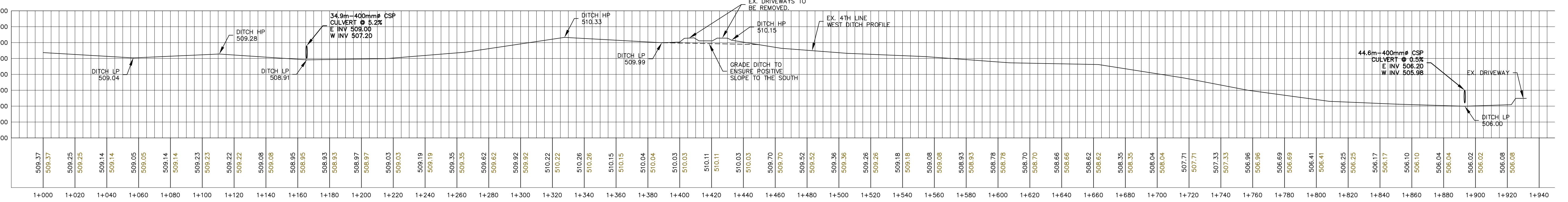
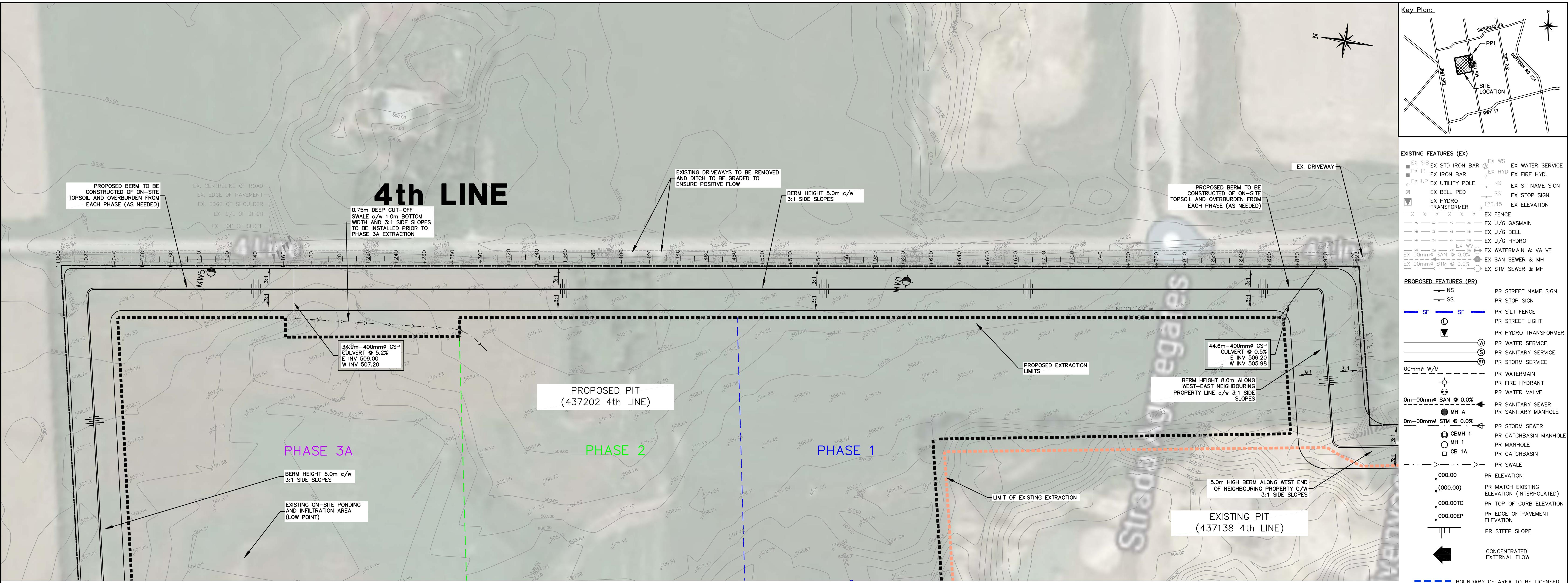
Issue / Revision
1 SUBMISSION – NVCA COMM
2 SUBMISSION
3 SUBMISSION
4 SUBMISSION

Date	
MENTS	MAY 24, 2024
	OCT. 18, 2024
	JUNE 24, 2025

DHL F

EROSION & CONTROL

PIT SEDIMENT PLAN



Client:
Duivenvoorden Haulage Ltd.
3425 9th Line
Innisfil, Ontario
L95 3Z6

WMI & Associates Limited
119 Collier Street
Barrie, Ontario
L4M 1H5
Ph 705-797-2027
www.wmiengineering.ca

Drawn By AW	Checked By JWL	Drawing No.
Scale 1:2000	Project No. 20-636	ESC

without prior written consent is strictly prohibited.

DRAWING REFERENCE NOTES:

1. BASE MAPPING AND TOPOGRAPHIC INFORMATION FROM DIGITAL DEM AND AIR PHOTO ANALYSIS PROVIDED BY GOOGLE EARTH 2018 EUROPE TECHNOLOGIES
2. SHELBURN PIT EXPANSION LANDS TOPOGRAPHIC INFORMATION PREPARED BY DHL DATED APRIL 8, 2025.
3. EXTERNAL TO THE SITE, THE DEM PROVIDED BY DHL IS INTERNAL TO THE SITE. THE DHL TOPOGRAPHIC SURVEY WAS USED. THE DEM SURFACE WAS RAISED BY 1.24m TO ALIGN WITH THE DHL TOPOGRAPHIC SURVEY.
4. PROPERTY BOUNDARY PREPARED BY RODNEY GREYER, OLS, DATED JANUARY 20, 2019.
5. OPERATIONAL PLAN PREPARED BY IPS DATED JUNE 2024.

CONSTRUCTION PHASING

PHASE 1 – INSTALL SILT FENCE, STRIP TOPSOIL & OVERTURDEN PHASE 1, 2, 3 (AS REQUIRED) TO CONSTRUCT ENTIRE BERM. INSTALL CULVERT AT SOUTHEAST CORNER OF SITE.

PHASE 2 – STRIP TOPSOIL & OVERTURDEN.

PHASE 3A – STRIP TOPSOIL & OVERTURDEN, INSTALL CUT-OFF SWALES & CULVERTS.

PHASE 3B – STRIP TOPSOIL & OVERTURDEN, REDIRECT SWALE TO PHASE 3A.

CAUTION
CONTRACTOR TO DETERMINE
LOCATION OF EXISTING UTILITIES
PRIOR TO CONSTRUCTION.

Notes:

1. Unless noted otherwise, the measurements and distances shown on this drawing are shown in meters.
2. Do not scale drawings.
3. It is the contractor's responsibility to verify all dimensions, levels and datums on site and report any discrepancies or omissions to WMI & Associates Ltd. prior to construction.
4. This drawing is to be read and understood in conjunction with all other relevant documents applicable to this project.
5. This drawing is the exclusive property of WMI & Associates Ltd. and the reproduction of any part of this document without prior written consent is strictly prohibited.

DHL PIT
**4th LINE DITCH
PLAN & PROFILE**
STA 1+000 TO 1+923

Client:
Duivenvoorden Haulage Ltd.
3425 9th Line
Innisfil, Ontario
L9S 3Z6

WMI & Associates Limited
119 Coller Street
Barrie, Ontario
L4M 1H5
Ph 705-797-2027
www.wmengineering.ca

Drawn By AW Checked By JWL Drawing No. PP1

Scale H-1:1250 V-1:125 Project No. 20-636

WMI & Associates Limited
119 Collier Street, Barrie, Ontario L4M 1H5
p (705) 797-2027 f (705) 797-2028

**RUNOFF COEFFICIENT CALCULATIONS
"C" SPREADSHEET**

Date: 27-May-25

Project No.: 20-636

Project: DHL Pit

Prepared By: AW

RUNOFF COEFFICIENT NUMBERS

Land Cover		Hydrologic Soil Groups		
		A-AB	B-BC	C-D
Cultivated Land	0 - 5% grade	0.22	0.35	0.55
	5 - 10% grade	0.3	0.45	0.6
	10 - 30% grade	0.4	0.65	0.7
Pasture Land	0 - 5% grade	0.1	0.28	0.4
	5 - 10% grade	0.15	0.35	0.45
	10 - 30% grade	0.22	0.4	0.55
Woodlot or Cutover	0 - 5% grade	0.08	0.25	0.35
	5 - 10% grade	0.12	0.3	0.42
	10 - 30% grade	0.18	0.35	0.52
Lakes and Wetlands		0.05	0.05	0.05
Impervious Area	(i.e. buildings, roads, parking lot, etc.)	0.95	0.95	0.95
Gravel	(not used for proposed parking or storage areas)	0.4	0.5	0.6
Residential	Single Family	0.3	0.4	0.5
	Multiple (i.e. semi, townhouse, apartment, etc.)	0.5	0.6	0.7
Industrial	Light	0.55	0.65	0.75
	Heavy	0.65	0.75	0.85
Commercial		0.6	0.7	0.8
Unimproved Areas		0.1	0.2	0.3
Lawn	< 2% grade	0.05	0.11	0.17
	2 - 7% grade	0.1	0.16	0.22
	> 7% grade	0.15	0.25	0.35

Ref: Runoff Coefficient Numbers - Adapted from Design Chart 1.07, Ontario Ministry of Transportation, "MTO Drainage Management Manual", MTO. (1997)

 << Elements Requiring Input Information

EXT-SUB CATCHMENT

Land Cover		Hydrologic Soil Groups		
		A-AB	B-BC	C-D
Cultivated Land	0 - 5% grade	64.9		
	5 - 10% grade	64.9		
	10 - 30% grade			
Pasture Land	0 - 5% grade			
	5 - 10% grade			
	10 - 30% grade			
Woodlot or Cutover	0 - 5% grade	26.6		
	5 - 10% grade			
	10 - 30% grade			
Lakes and Wetlands				
Impervious Area	(i.e. buildings, roads, parking lot, etc.)	1.7		
Gravel	(not used for proposed parking or storage areas)			
Residential	Single Family			
	Multiple (i.e. semi, townhouse, apartment, etc.)			
Industrial	Light			
	Heavy			
Commercial				
Unimproved Areas				
Lawn	< 2% grade			
	2 - 7% grade			
	> 7% grade			

Total Area (ha) = 158.0
Z:\Projects\2020\20-636\Design\Storm\Issue#4\1-250527_C_CALCS.xlsx\CALCS

Runoff Coefficient, C = 0.24

WMI & Associates Limited
119 Collier Street, Barrie, Ontario L4M 1H5
p (705) 797-2027 f (705) 797-2028

TIME OF CONCENTRATION & TIME TO PEAK CALCULATIONS
T_C & T_P SPREADSHEET

Date: 27-May-25

Project No.: 20-636

Project: DHL Pit

Prepared By: AW

OVERLAND SHEET FLOW TIME OF CONCENTRATION (T_C) CALCULATION, T_{C, OVER}

The Runoff Coefficient 'C' governs which Time of Concentration Formula is used:
C > 0.40 Bransby Williams Formula
C <= 0.40 Airport Formula (FAA Equation)
Ref: MTO, Drainage Management Manual, pg 28, Ch. 8, 1997

<<< Elements Requiring Input Information

Catchment I.D.	Area (ha)	h ₁ (m)	h ₂ (m)	Length (m)	Runoff Coefficient	h _{DELT} (m)	Slope (%)
EXT-SUB	158	525	505.5	2942	0.24	19.5	0.7

T _{C, OVER} (min.)	
Airport Formula	Bransby Williams Formula

$$T_{C, OVER} = \frac{3.26 (1.1-C) (L)^{0.5}}{(S)^{0.33}} \quad (\text{min.})$$

where, C = Runoff Coefficient
L = Length of Overland Flow Path, (m)
S = Avg. Slope of Overland Flow Path, (%)

$$T_{C, OVER} = \frac{0.057 (L)}{(S)^{0.2} (A)^{0.1}} \quad (\text{min.})$$

where, L = Length of Overland Flow Path, (m)
S = Avg. Slope of Overland Flow Path, (%)
A = Catchment Area, (ha)

CHANNELIZED FLOW TIME OF CONCENTRATION (T_C) CALCULATION, T_{C, CHAN}

Refer to separate sheet attached for the calculation of the Velocity values (i.e. Flow Master Output, Manning's Channel Spreadsheet, etc.).

Catchment I.D.	Length (m)	Velocity (m/s)

T _{C, CHAN} (min.)

$$T_{C, CHAN} = \frac{L}{V} \quad (\text{min.})$$

where, L = Length of Channel, (m)
V = Flow Velocity in Channel, (m/s)

PIPED FLOW TIME OF CONCENTRATION (T_C) CALCULATION, T_{C, PIPE}

Refer to separate sheet attached for the calculation of the Velocity values (i.e. Culvert Master Output, Manning's Pipe Spreadsheet, etc.).

Catchment I.D.	Length (m)	Velocity (m/s)

T _{C, PIPE} (min.)

$$T_{C, PIPE} = \frac{L}{V} \quad (\text{min.})$$

where, L = Length of Pipe, (m)
V = Flow Velocity in Pipe, (m/s)

TOTAL TIME OF CONCENTRATION (T_C) AND TIME TO PEAK (T_P) CALCULATION, T_{C, TOTAL}, T_{P, TOTAL}

The Total Time of Concentration and Time to Peak values consist of a combination of the Overland, Channel and/or Pipe travel times.

Catchment I.D.	T _{C, OVER} (min.)	T _{C, CHAN} (min.)	T _{C, PIPE} (min.)

T _{C, TOTAL} (min.)	T _{P, TOTAL} (min.)	T _{P, TOTAL} (min.)

$$T_{C, TOTAL} = T_{C, OVER} + T_{C, CHAN} + T_{C, PIPE} \quad (\text{min.})$$
$$T_{P, TOTAL} = 0.67 \times T_{C, TOTAL} \quad (\text{min.})$$

WMI & Associates Limited
119 Collier Street, Barrie, Ontario L4M 1H5
p (705) 797-2027 f (705) 797-2028

RATIONAL METHOD CALCULATIONS

Date: 27-May-25

Project No.: 20-636

Project: DHL Pit

Prepared By: AW

<<< Elements Requiring Input Information

Rainfall Intensity-Duration-Frequency Coefficients from: MTO IDF Curve Lookup

2-year	5-year	10-year	25-year	50-year	100-year
A = 22.8	A = 30.1	A = 35.0	A = 41.1	A = 45.7	A = 50.2
B = -0.699					

Rational Method Formula

$$Q = \frac{C \times I \times A}{360} \quad (\text{m}^3/\text{s})$$

where, C = Runoff Coefficient
I = Rainfall Intensity, (mm/hr)
A = Drainage Area, (ha)

Rainfall Intensity Equation (2-100 year storm events)

$$I_{2-100} = A \times (T_c / 60)^B \quad (\text{mm/hr})$$

where, A = Rainfall IDF Coefficient
B = Rainfall IDF Coefficient
T_c = Time of Concentration, (min)

Runoff Coefficient Equations

Based on MTO Drainage Manual (1984), page BD-4

2-year	C ₂ = C
5-year	C ₅ = C
10-year	C ₁₀ = C
25-year	C ₂₅ = 1.10 x C
50-year	C ₅₀ = 1.20 x C
100-year	C ₁₀₀ = 1.25 x C

Rainfall Intensity Equation (25mm storm event)

Based on the MOE SWMP Manual (2003), Eq'n 4.9

$$I_{25mm} = (43 \times C) + 5.9 \quad (\text{mm/hr})$$

where, C = Runoff Coefficient

For storms having a return period of more than 10 years, the Runoff Coefficient, C, will be increased as indicated above, up to a maximum value of 1.

Catchment I.D.	A (ha)	T _c (min.)	C	Q _{25mm} (m ³ /s)	Q ₂ (m ³ /s)	Q ₅ (m ³ /s)	Q ₁₀ (m ³ /s)	Q ₂₅ (m ³ /s)	Q ₅₀ (m ³ /s)	Q ₁₀₀ (m ³ /s)
EXT-SUB	158.0	174.2	0.24	1.709	1.140	1.505	1.750	2.261	2.742	3.138

Z:\Projects\2020\20-636\Design\Storm\Issue#4\[3-250527_Rational_Method_Calcs(A,B).xlsx]Rational Method

Culvert Calculator Report

Twin 900mm North Berm Culvert

Comments: The twin 900mm diameter culvert is sized to convey the 100-year design storm event from the contributing drainage area (3.138m³/s).

Solve For: Headwater Elevation

Culvert Summary

Allowable HW Elevation	508.00 m	Headwater Depth/Height	1.66
Computed Headwater Elev:	507.52 m	Discharge	3.1380 m ³ /s
Inlet Control HW Elev.	507.52 m	Tailwater Elevation	505.10 m
Outlet Control HW Elev.	507.46 m	Control Type	Inlet Control

Grades

Upstream Invert Length	506.00 m 38.90 m	Downstream Invert Constructed Slope	505.10 m 0.023136 m/m
------------------------	---------------------	--	--------------------------

Hydraulic Profile

Profile	M2	Depth, Downstream	0.74 m
Slope Type	Mild	Normal Depth	0.76 m
Flow Regime	Subcritical	Critical Depth	0.74 m
Velocity Downstream	2.77 m/s	Critical Slope	0.024319 m/m

Section

Section Shape	Circular	Mannings Coefficient	0.024
Section Material	CMP	Span	0.91 m
Section Size	900 mm	Rise	0.91 m
Number Sections	2		

Outlet Control Properties

Outlet Control HW Elev.	507.46 m	Upstream Velocity Head	0.37 m
Ke	0.90	Entrance Loss	0.33 m

Inlet Control Properties

Inlet Control HW Elev.	507.52 m	Flow Control	N/A
Inlet Type	Projecting	Area Full	1.3 m ²
K	0.03400	HDS 5 Chart	2
M	1.50000	HDS 5 Scale	3
C	0.05530	Equation Form	1
Y	0.54000		

Culvert Calculator Report

400mm East Berm Culvert

Comments: The maximum flow the 400mm diameter culvert will convey before the runoff spills the southern high point within the 4th Line ditch is 0.298m³/s.

The maximum headwater elevation of 510.33m is the southern high point within the 4th Line ditch.

Solve For: Discharge

Culvert Summary

Allowable HW Elevation	510.33 m	Headwater Depth/Height	3.27
Computed Headwater Elev.	510.33 m	Discharge	0.2979 m ³ /s
Inlet Control HW Elev.	510.17 m	Tailwater Elevation	507.20 m
Outlet Control HW Elev.	510.33 m	Control Type	Outlet Control

Grades

Upstream Invert	509.00 m	Downstream Invert	507.20 m
Length	34.90 m	Constructed Slope	0.051576 m/m

Hydraulic Profile

Profile	CompositeM2PressureProfile	Depth, Downstream	0.38 m
Slope Type	Mild	Normal Depth	N/A m
Flow Regime	Subcritical	Critical Depth	0.38 m
Velocity Downstream	2.38 m/s	Critical Slope	0.055555 m/m

Section

Section Shape	Circular	Mannings Coefficient	0.024
Section Material	CMP	Span	0.41 m
Section Size	400 mm	Rise	0.41 m
Number Sections	1		

Outlet Control Properties

Outlet Control HW Elev.	510.33 m	Upstream Velocity Head	0.27 m
Ke	0.90	Entrance Loss	0.24 m

Inlet Control Properties

Inlet Control HW Elev.	510.17 m	Flow Control	Submerged
Inlet Type	Projecting	Area Full	0.1 m ²
K	0.03400	HDS 5 Chart	2
M	1.50000	HDS 5 Scale	3
C	0.05530	Equation Form	1
Y	0.54000		

Worksheet for Temporary Phase 3A Swale

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.035
Channel Slope	1.00 %
Left Side Slope	3.0 H:V
Right Side Slope	3.0 H:V
Bottom Width	2.00 m
Discharge	3.138 m ³ /s

Results

Normal Depth	0.57	m
Flow Area	2.11	m^2
Wetted Perimeter	5.60	m
Hydraulic Radius	0.38	m
Top Width	5.41	m
Critical Depth	0.49	m
Critical Slope	1.79	%
Velocity	1.49	m/s
Velocity Head	0.11	m
Specific Energy	0.68	m
Froude Number	0.76	
Flow Type	Subcritical	

GVF Input Data

Downstream Depth 0.00 m
Length 0.00 m
Number Of Steps 0

GVF Output Data

Upstream Depth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Downstream Velocity	Infinity	m/s
Upstream Velocity	Infinity	m/s
Normal Depth	0.57	m
Critical Depth	0.49	m
Channel Slope	1.00	%

Worksheet for Temporary Phase 3A Swale

GVF Output Data

Critical Slope 1.79 %

Messages

Notes

The proposed temporary swale has been designed to convey the 100-year design storm event from the contributing external drainage area (3.138m³/s).

Worksheet for Phase 3A Cut-off Swale

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.035
Channel Slope	1.00 %
Left Side Slope	3.0 H:V
Right Side Slope	3.0 H:V
Bottom Width	1.00 m
Discharge	0.298 m ³ /s

Results

Normal Depth	0.22	m
Flow Area	0.37	m^2
Wetted Perimeter	2.39	m
Hydraulic Radius	0.15	m
Top Width	2.32	m
Critical Depth	0.17	m
Critical Slope	2.46	%
Velocity	0.82	m/s
Velocity Head	0.03	m
Specific Energy	0.25	m
Froude Number	0.66	
Flow Type	Subcritical	

GVF Input Data

Downstream Depth 0.00 m
Length 0.00 m
Number Of Steps 0

GVF Output Data

Upstream Depth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Downstream Velocity	Infinity	m/s
Upstream Velocity	Infinity	m/s
Normal Depth	0.22	m
Critical Depth	0.17	m
Channel Slope	1.00	%

Worksheet for Phase 3A Cut-off Swale

GVF Output Data

Critical Slope 2.46 %

Messages

Notes

The 0.75m deep cut-off swale has been designed to convey the maximum flow conveyed through the upstream 400mm diameter culvert (0.298m³/s)